Виды зубчатых колес, их назначение и характеристики. Основные параметры, характеризующие зубчатые колеса Параметры зубьев шестерни

Характеристика зубчатых колес

Виды зубчатых колес, их назначение и характеристики. Основные параметры, характеризующие зубчатые колеса Параметры зубьев шестерни

В современных машинах широко применяют зубчатые передачи. Различают силовые зубчатые передачи, предназначенные для передачи крутящего момента с изменением частоты вращения валов, и кинематические передачи, служащие для передачи вращательного движения между валами при относительно небольших крутящих моментах.

Зубчатые передачи, используемые в различных механизмах и ма-шинах, делят на цилиндрические, конические, червячные, смешан-ные и гиперболоидные (винтовые и гипоидные).

Наибольшее распространение получили цилиндрические, кони-ческие и червячные передачи (рис. 1.91).

Рис. 1.91. Виды зубчатых передач:

а — цилиндрическая; б— коническая; в —червячная; 1 — шестерня; 2— зубчатое колесо; 3— червяк; 4— червячное колесо

Ниже рассмотрены способы формообразования зубьев цилиндрических зубчатых колес.

Обработка конических зубчатых колес, червяков и червячных ко-лес излагается, например, в работах [15, 29].

Цилиндрические зубчатые колеса изготовляют с прямыми и ко-сыми зубьями, реже — с шевронными. Стандарт устанавливает 12 степеней точности цилиндрических зубчатых колес (в порядке убы-вания точности): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Для 1, 2-й степеней допуски стандартом не предусматриваются. Для каждой степени точности предусматривают следующие нормы:

— кинематической точности колеса, определяющие полную по-грешность угла поворота зубчатых колес за один оборот;

— плавности работы колес, определяющие составляющую пол-ной погрешности угла поворота зубчатого колеса, многократно по-вторяющейся за оборот колеса;

— контакта зубьев, определяющие отклонение относительных размеров пятна контакта сопряженных зубьев в передаче.

Независимо от степени точности колес установлены нормы боко-вого зазора (виды сопряжении зубчатых колес). Существуют шесть видов сопряжении зубчатых колес в передаче, которые в порядке убывания гарантированного бокового зазора обозначаются буквами А, В, С, D, Е, Н, и восемь видов допуска (Tjn) на боковой зазор: х, у, z, a, b, с, d, h.

В соответствии со стандартом, точность зубчатых колес может быть определена как комплексными, так и дифференцированными показателями.

По технологическому признаку зубчатые колеса делятся на:

— цилиндрические и конические без ступицы и со ступицей, с гладким или шлицевым отверстием;

— многовенцовые блочные с гладким или шлицевым отверстием;

— цилиндрические, конические и червячные типа фланца;

— цилиндрические и конические с хвостовиком;

— валы-шестерни.

У цилиндрических колес зубья выполняют прямыми, спиральными или шевронными.

Обработка зубчатых колес разделяется на два этапа: обработку до нарезания зубьев и обработку зубчатого венца. Задачи первого этапа соответствуют в основном аналогичным задачам, решаемым при обработке деталей классов: диски (зубчатое колесо плоское без ступицы), втулки (со ступицей) или валов (вал-шестерня). Операции второго этапа обычно сочетают с отделочными операциями обработки

Рис. 1.92. Зубчатое колесо с типовыми требованиями к точности его изготовления

корпуса колеса. На построение технологического процесса обработки зубчатых колес влияют следующие факторы: форма зубчатого колеса; форма и расположение зубчатого венца и количество венцов; степень точности колеса; методы контроля зубчатых колес; материал колеса; наличие и вид термообработки; габаритные размеры; объем выпуска.

На рис. 1.92 показаны типовые требования к точности полуфаб-риката для нарезания зубьев в зависимости от вышеперечисленных факторов.

1. Точность размера окружности выступа (d) зависит от метода контроля толщины зуба: когда d является измерительной базой, то Δd = 0,5 Tн, когда d не является измерительной базой, диаметр d мо-жет изготавливаться по IT12, где Тн — допуск на смещение исходного контура.

2. Радиальное биение поверхности вершин зубьев относительно оси отверстия (измерительной базы) не более 0,25 Тн, когда d используется для контроля толщины зуба, например, при контроле смещения исходного контура.

6. Отверстие изготавливается по H6 для зубчатых колес 5-й степени точности и по H7 для зубчатых колес 6,7,8-й степени точности.

Наибольшее влияние на протяженность технологического мар-шрута оказывает степень точности колеса. При изготовлении высо-коточных колес (6, 5 и выше степеней точности) механическая обработка должна чередоваться с операциями термической обработки для снятия внутренних напряжений, а количество отделочных операций технологических баз и зубчатого венца значительно возрастает.

Технологические задачи

Точность размеров. Самым точным элементом зубчатого колеса является отверстие, которое выполняется обычно по 7-му квалитету, если нет особых требований.

Точность формы. В большинстве случаев особых требований к точности формы поверхностей не предъявляется.

Точность взаимного расположения. Требования к точности взаим-ного расположения представлены на рис. 1.92.

Твердость рабочих поверхностей. В результате термической обра-ботки поверхностная твердость зубьев цементируемых зубчатых колес должна быть в пределах HСЭ45…6О при глубине слоя цементации 1…2 мм. При цианировании твердость HRСЭ42…53, глубина слоя должна быть в пределах 0,5…0,8 мм.

Твердость незакаливаемых поверхностей обычно находится в пределах НВ 180…270.

Для рассматриваемого зубчатого колеса (см. рис. 1.98):

— посадочное отверстие выполняется по 7-му квалитету;

— точность формы не задается;

— точность взаимного расположения ограничена величинами торцового и радиального биений относительно оси отверстия не бо-лее 0,016 и 0,025 мм, а также отклонением от симметричности шпо-ночного паза относительно оси отверстия не более 0,02 мм;

— шероховатость поверхности зубчатого венца Ra = 0,63 мкм, отверстия и торцов 1,25 мкм. Зубчатый венец закаливается ТВЧ до HRСЭ45…50 на глубину 1…2 мм.



Источник: https://infopedia.su/14xadab.html

Зубчатые передачи, классификация. Основные параметры зубчатых колес – Черчение

Виды зубчатых колес, их назначение и характеристики. Основные параметры, характеризующие зубчатые колеса Параметры зубьев шестерни

Зубчатой передачей называется меха­низм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим, а на получающем вращение — ведомым. Меньшее из двух колес со­пряженной пары называют шестерней; большее — колесом; тер­мин «зубчатое колесо» относится к обеим деталям передачи.

Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высо­кий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт).

К недостаткам зубчатых передач следует отнести: необходимость высо­кой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа.

В связи с разнообразием условий эксплуатации формы элементов зубча­тых зацеплений и конструкции передач весьма разнообразны.

Зубчатые передачи классифицируются по признакам, приведенным ниже.

  1. По взаимному расположению осей колес: с па­раллельными осями (цилиндрическая передача — рис. 172, I—IV); с пере­секающимися осями (коническая передача — рис. 172, V, VI); со скрещива­ющимися осями (винтовая передача — рис. 172, VII; червячная передача — рис. 172, VIII).
  2. В зависимости от относительного вращения колес и расположения зубьев различают передачи с внеш­ним и внутренним зацеплением. В первом случае (рис. 172, I—III) враще­ние колес происходит в противоположных направлениях, во втором (рис. 172, IV) — в одном направлении. Реечная передача (рис. 172, IX) служит для преобразования вращательного движения в поступательное.
  3. По форме профиля различают зубья эвольвентные (рис. 172, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зу­бья колес которой очерчены дугами окружности.
  4. В зависимости от расположения теоретичес­кой линии зуба различают колеса с прямыми зубьями (рис. 173, I), косыми (рис. 173, II), шевронными (рис. 173, III) и винтовыми (рис. 173, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и пере­дачи больших мощностей.
  5. По конструктивному оформлению различают закры­тые передачи, размещенные в специальном непроницаемом корпусе и обес­печенные постоянной смазкой из масляной ванны, и открытые, работаю­щие без смазки или периодически смазываемые консистентными смазками (рис. 174).
  6. По величине окруж­ной скорости различают: тихо­ходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3… 15 м/с) и быстроходные (v более 15 м/с).

Рис. 172

Рис. 173

Рис. 174

Основы теории зацепления

Боковые грани зубьев, соприкасаю­щиеся друг с другом во время враще­ния колес, имеют специальную кри­волинейную форму, называемую про­филем зуба. Наиболее распространен­ным в машиностроении является эвольвентный профиль (рис. 175).

Рис. 175

Придание профилям зубьев зубча­тых зацеплений таких очертаний не является случайностью. Чтобы зубья двух колес, находящихся в зацепле­нии, могли плавно перекатываться один по другому, необходимо было вы­брать такой профиль для зубьев, при котором не происходило бы перекосов и защемления головки одного зуба во впадине другого.

На рис. 176 изображена пара зубчатых колес, находящихся в зацепле­нии. Линия, соединяющая центры колес О1 и О2 называется линией центров или межосевым расстоянием — aw.

Рис. 176

Точка Р касания начальных окружностей dW1 и dW2 — полюс — все­гда лежит на линии центров. Начальными называются окружнос­ти, касающиеся друг друга в полюсе зацепления, имеющие общие с зуб­чатыми колесами центры и перекатывающиеся одна по другой без сколь­жения.

Если проследить за движением пары зубьев двух колес с момен­та, когда они впервые коснутся друг друга до момента, когда они выйдут из зацепления, то ока­жется, что все точки касания их в процессе движения будут лежать на одной прямой NN.

Прямая NN, проходящая через полюс за­цепление Р и касательная к ос­новным* окружностям db1, db2, двух сопряженных колес, назы­вается линией зацепле­ния.

Отрезок ga линии зацепле­ния, отсекаемый окружностями выступов сопряженных колес, — активная часть линии зацепле­ния, определяющая начало и ко­нец зацепления пары сопряжен­ных зубьев.

Линия зацепления представ­ляет собой линию давления со­пряженных профилей зубьев в процессе эксплуатации зубча­той передачи.

Угол ?w между линией зацеп­ления и перпендикуляром к ли­нии центров O1О2 называется углом зацепления. В основу профилирования эвольвентных зубьев и инструмента для их на­резания положен стандартный по ГОСТ 13755-81 исходный контур так называемой рейки, равный 20°.

Во время работы цилиндри­ческой прямозубой передачи сила давления Рn ведущей шес­терни O1 в начале зацепления передается ножкой зуба на со­пряженную боковую поверх­ность (контактную линию) головки ведомого колеса О2. Чем больше пара зубьев одновременно находится в зацеплении, тем более плавно работает передача, тем меньшую нагрузку воспринимает на себя каждый зуб.

Стремление сделать зубчатую передачу более компактной вызывает не­обходимость применять зубчатые колеса с возможно меньшим числом зубь­ев. Изменение количества зубьев зубчатого колеса влияет на их форму (рис. 177).

При увеличе­нии числа зубьев до бесконечно­сти  колесо превращается в рейку и зуб приобретает пря­молинейное очертание.

С умень­шением числа зубьев одновре­менно уменьшается толщина зу­ба у основания и вершины, а так­же увеличивается кривизна эвольвентного профиля, что приводит к уменьшению проч­ности зуба на изгиб.

При умень­шении числа зубьев, когда z < zmim, происходит так называе­мое подрезание зубьев, то есть явление, когда зубья большого колеса при вращении заходят в область ножки меньшего колеса (см. заштрихованная площадь на рис. 177), тем самым ослабляя зуб в самом опасном сечении, увеличивая износ зубьев и снижая КПД передачи.

Рис. 177

На практике подрезку зубьев предотвращают прежде всего выбором со­ответствующего числа зубьев. Наименьшее число зубьев (zmin), при кото­ром еще не происходит подрезание, рекомендуется выбирать от 35 до 40 при равном 15° и от 18 до 25 при ?w равном 20°.

В отдельных случаях приходится выполнять передачу с числом зубьев меньшим, чем рекомендуется, при этом производят исправление, или, как говорят, корригирование формы зубьев. Один из таких способов заключает­ся в изменении высоты головки и ножки зуба до ha = 0,8m; hf = m. Этот спо­соб исключает подрезку, но увеличивает износ зубьев.

Теперь обратимся к изложению основной теоремы зацепления: общая нормаль (линия зацепления NN) к сопряженным профилям зубьев делит межосевое расстояние ( ?w= О1О2) на отрезки (О1Р и 02Р), обратно пропор­циональные угловым скоростям (w1 и w2). Если положение точки Р (полю­са зацепления) неизменно в любой момент зацепления, то передаточное от­ношение — отношение частоты вращения ведущего колеса к частоте враще­ния ведомого — будет постоянным.

02Р / O1P = w1/w2 = i = const.

4.3. Основные элементы зубчатых зацеплений.

При изменении осевого расстояния ?w = О1О2 пары зубчатых колес будет меняться и положение по­люса зацепления Р на линии центров, а следовательно, и величина диаметров начальных окружностей, то есть у пары сопряженных зубчатых колес может быть бесчисленное множество начальных окружностей. Следует отметить, что понятие начальные окружности относится лишь к паре со­пряженных зубчатых колес. Для отдельно взятого зубчатого колеса нельзя говорить о начальной окружности.

Если заменить одно из колес зубчатой рейкой, то для каждого зубчатого колеса найдется только одна окружность, катящаяся по начальной прямой рейке без скольжения, — эта окружность называется делительной.

Примечание. В настоящей книге рассматриваются зубчатые передачи, у которых на­чальные и делительные окружности совпадают.

Так как у каждого зубчатого колеса имеется только одна делительная ок­ружность, то она и положена в основу определения основных параметров

зубчатой передачи по ГОСТ 16530- 83 и ГОСТ 16531-83 (рис. 178)

Рис. 178

Основные параметры зубчатых колес:

1.  Делительными окружностя­ми пары зубчатых колес называ­ются соприкасающиеся окружно­сти, катящиеся одна по другой без скольжения. Эти окружности, на­ходясь в зацеплении (в передаче), являются сопряженными. На чер­тежах диаметр делительной ок­ружности обозначают буквой d.

2.  Окружной шаг зубьев Рt — расстояние (мм) между одноимен­ными профильными поверхностя­ми соседних зубьев. Шаг зубьев, как нетрудно представить, равен делительной окружности, разде­ленной на число зубьев z.

3.  Длина делительной окруж­ности. Модуль. Длину делитель­ной окружности можно выразить через диаметр и число зубьев: Пd = Pt • r. Отсюда диаметр делитель­ной окружности d = (Рt • z)/П.

Отношение Pt/П называется модулем зубчатого зацепления и обозначается буквой т. Тогда диаметр дели­тельной окружности можно выразить через модуль и число зубьев d = m • z. Отсюда m = d/z.

Значение модулей для всех передач — вели­чина стандартизированная.

Для понимания зависимости между вели­чинами Рt т и d приведена схема на рис. 178, II, где условно показано размещение всех зубь­ев 2 колеса по диаметру ее делительной окруж­ности в виде зубчатой рейки.

4. Высота делительной головки зуба ha — расстояние между делительной окружностью колеса и окружностью вершин зубьев.

5. Высота делительной ножки зуба hf — расстояние между делительной окружностью колеса и окружностью впадин.

6.     Высота зуба h — расстояние между ок­ружностями вершин зубьев и впадин цилинд­рического зубчатого колеса h = ha + hf..

7. Диаметр окружности вершин зубьев da — диаметр окружности, ограничивающей вершины головок зубьев.

8. Диаметр окружности впадин зубьев df — диаметр окружности, прохо­дящей через основания впадин зубьев.

При конструировании механизма конструктор рассчитывает величину модуля т для зубчатой передачи и, округлив, подбирает модуль по таблице стандартизированных величин. Затем он определяет величины остальных геометрических элементов зубчатого колеса.

Зубчатые передачи с зацеплением M.Л. Новикова

В этом зацепле­нии профиль зубьев выполняется не по эвольвенте, а по дуге окружности или по кривой, близкой к ней (рис. 179).

Рис. 179

При зацеплении выпуклые зубья одного из колес контактируют с вогнуты­ми зубьями другого. Поэтому площадь соприкосновения одного зуба с другим в передаче Новикова значительно больше, чем в эвольвентных передачах. Касание сопряженных профилей теоретически происходит в точке, поэтому данный вид зацепления называют точечным.

При одинаковых с эвольвентным зацеплением параметрах точечная систе­ма зацепления с круговым профилем зуба обеспечивает увеличение контакт­ной прочности, что в свою очередь позволяет повысить нагрузочную способ­ность передачи в 2…3 раза по сравнению с эвольвентной.

Взаимодействие зу­бьев в сравниваемых передачах также различно: в эвольвентном зацеплении преобладает скольжение, а в зацеплении Новикова — качение.

Это создает благоприятные условия для увеличения масляного слоя между зубьями, уменьшения потерь на трение и увеличения сопротивления заеданию.

К достоинствам зацепления Новикова относятся возможность примене­ния его во всех видах зубчатых передач: с параллельными, пересекающи­мися и скрещивающимися осями колес, с внешним и внутренним зацепле­нием, постоянным и переменным передаточным отношением. Потери на трение в этой системе зацепления примерно в 2 раза меньше потерь в эвольвентном зацеплении, что увеличивает КПД передачи.

К основным недостаткам передач с зацеплением Новикова относятся: технологическая трудоемкость изготовления колес, ширина колес должна быть не менее 6 модулей и др. В настоящее время передачи с зацеплением Новикова находят применение в редукторах больших размеров.

Источник: http://cherch.ru/mechanicheskie_peredachi/zubchatie_peredachi.html

Анализ конструкции зубчатых колес и определение их параметров

Виды зубчатых колес, их назначение и характеристики. Основные параметры, характеризующие зубчатые колеса Параметры зубьев шестерни

Лабораторная работа №1АНАЛИЗ КОНСТРУКЦИИ ЗУБЧАТЫХ КОЛЕС И ОПРЕДЕЛЕНИЕ ИХ ПАРАМЕТРОВ

  1. Назначение и классификация зубчатых колес

Механическая передача, состоящая из зубчатых колес и служащая для передачи вращательного движения, называется зубчатой.

По способу передачи движения она относится к передачам зацеплением. (Нужно иметь в виду, что кроме передач зацеплением существуют передачи трением).

Назначение зубчатого колеса: передача вращательного движения и крутящего момента от сопряженного колеса на вал или с вала на сопряженное колесо с обеспечением заданных нагрузочных и скоростных параметров в течение заданного срока эксплуатации.

Зубчатые колеса используют так же в реечных передачах, которые предназначены для преобразования вращательного движения в поступательное или наоборот.

:

по типу передачи – цилиндрические и конические;

по типу зубьев – прямозубые, косозубые, шевронные и с криволинейными зубьями. (Рис 1, 2);Рис 1. Примеры цилиндрических зубчатых передач с внешним и внутренним зацеплением

по расположению зубьев – с внешним и внутренним зацеплением (Рис 1);

по конструктивному исполнению – колеса, изготовленные совместно с валом и называемые вал-шестерня (Рис.3.) и автономные (Рис.4.

) В последнем случае вал и зубчатое колесо изготавливают отдельно, затем монтируют совместно в одну сборочную единицу за счет специальных соединений (чаще всего шпоночных или шлицевых) таким образом, чтобы колесо не имело возможности поворота вокруг вала. В таком состоянии при эксплуатации передачи колесо и вал могут взаимно передавать крутящие моменты.

Косозубые колеса классифицируют по направлению зубьев – с правым и левым направлением. Для определения направления нужно посмотреть вдоль зуба в верхней части косозубого колеса. Если по направлению взгляда зуб отклоняется вправо, то соответственно направление зуба правое и наоборот.

а. б. в.Рис.2. Конические зубчатые передачи с прямыми (а.) и криволинейными (б.) зубьями;в – реечная передача с прямыми зубьямиРис. 3. Зубчатое колесо, изготовленное совместно с валом
2. Конструктивные исполнения цилиндрических зубчатых колес

Основными конструктивными элементами зубчатого колеса являются:

обод, на котором нарезаны или накатаны зубья;

ступица, закрепляемая на валу,

диск, соединяющий обод со ступицей. В диске могут выполняться отверстия для уменьшения массы и момента инерции колес (Рис. 4 в, г).

В частных случаях: – обод, диск и ступица объединены в одну конструкцию (Рис. 4 а). – выполнены заодно только обод и диск (Рис. 4 б).а. б. в. г.Рис. 4.

Конструктивные элементы автономных зубчатых колес: а – только обод; б – обод и ступица; в – обод, диск и ступица (толщина диска равна ширине обода); г – обод, диск и ступица

Зубчатые колеса в большинстве случаев изготавливают из сталей. Реже из чугунов, полимерных материалов и цветных металлов.

Колеса из сталей используют как в открытых, так и в закрытых передачах относительно высокой мощности. Для изготовления колес открытых передач при окружной скорости до 6 м/с используют высокопрочный чугун. Колеса тихоходных и малонагруженных открытых передач можно изготавливать из серого чугуна.

Колеса из полимерных материалов применяют в малонагруженных передачах, когда необходимо обеспечить бесшумную работу, так как эти материалы обладают высокими демпфирующими свойствами, т. е. способны поглощать энергию ударов.

Производство стальных зубчатых колес может быть организовано в одну или две стадии. Одностадийное производство – это механическая обработка готового проката (прутка). В две стадии вначале изготавливают стальную заготовку методами свободной ковки, объемной штамповки или литья, затем проводят ее механическую обработку.

Для повышения эксплуатационных свойств материалы колес подвергают термической или термохимической обработке: улучшению, закалке, цементации или азотированию. Улучшение проводят в объеме заготовки до ее механической обработки; закалку, цементацию и азотирование – рабочих поверхностей зубьев после их нарезки.

Способ изготовления стальных колес определяется их размерами и программой выпуска. Колеса диаметром до 200 мм чаще всего изготавливают механической обработкой из прутка. На боковых плоских поверхностях таких изделий отчетливо различимы канавки, образованные в результате проходов токарного резца.

Колеса диаметром от 200 до 500 мм чаще всего изготавливают с использованием кованых или штампованных заготовок. Боковые поверхности таких колес, не подвергнутые механической обработке, имеют однородную чистоту обработки без явно выраженных неровностей, так как она соответствует чистоте обработки формообразующего инструмента штампа.

При больших диаметрах (более 500 мм) колеса изготавливают литыми. При малых тиражах выпуска или в индивидуальном производстве для изготовления слабонагруженных металлических колес любых размеров могут использоваться заготовки, отформованные литьем.

При этом шероховатость боковых поверхностей относительно высока, так как она определяется контактом металлического расплава с формовочной смесью, основным компонентом которой является песок.

Независимо от способа получения заготовки зубья на колесах получают способами нарезания или горячей накатки. Последний способ наиболее экономичен, позволяет повысить изгибную прочность зубьев, но снижает их размерную точность.

Технологические приемы изготовления зубчатых колес из полимерных материалов наиболее производительны и экономичны, так как окончательное формообразование изделия реализуется за одну операцию.

Такими операциями являются: литье под давлением из термопластичных материалов и прессование из термореактивных. Конфигурация оформляющей полости технологической оснастки полностью соответствует конфигурации зубчатого колеса с обеспечением высокой чистоты обработки по всей поверхности.

Вместе с тем эксплуатация такой дорогостоящей оснастки и соответствующего формующего оборудования экономически оправданы только при больших тиражах выпуска деталей для низконагруженных передач.

Вместе с тем в последние годы интенсивно развивается индустрия композиционных материалов на полимерной основе, содержащих высокопрочные волокна, сухие смазки, добавки, устраняющие хрупкость материала и др. Рецептура таких материалов, как правило, соответствует условиям эксплуатации изделия.

Однако стоимость полимерных композиционных материалов значительно выше стоимости металлов. Поэтому из композиционных материалов на полимерной основе изготавливают зубчатые колеса в основном малой массы в конструкциях приборов точной механики и бытовой техники.

Зубчатые передачи из полимерных материалов могут работать без смазки, поэтому они успешно применяются в оборудования пищевой промышленности.

В инженерной практике решаются две задачи:- анализ существующего механизма, когда требуются измерения его геометрических параметров;- синтез механизма, когда необходимо рассчитать эти параметры.В данной работе рассматриваются элементы, как анализа, так и синтеза, применительно к колесам зубчатых передач.

Максимальная мощность, передаваемая зубчатой передачей, в значительной степени зависит от двух параметров: высоты зубьевH и делительных диаметров колес d. Оба эти параметра одновременно учитывает основная характеристика передачи – ее модуль: ,

где z – число зубьев колеса. Чем крупнее зубья, тем меньше их количество при постоянном значении d и тем выше модуль.

Предварительное значение модуля m' можно определить через высоту зуба H:

– для цилиндрических колес m' = H / 2,5.

Ниже приведены ряды значений стандартного модуля m, наиболее часто применяемых в машиностроении (в реальном промышленном проектировании 1-й ряд предпочитают второму):

1-й ряд: 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25; 32; 40 мм.2-й ряд: 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14; 18; 22; 28; 36; 45 мм.

В настоящей работе величину модуля m'следует уточнить по стандарту и принять значение m ближайшее большее из любого указанного ряда.

При известных значениях параметров z и d модуль m' определяют из выражения:

d = mz.

Диаметр делительной окружности колеса d измерить невозможно. Поэтому с помощью измерительных устройств, например, штангенциркулем, оценивают диаметр вершин зубьев da и диаметр впадинdf. При заранее заданных параметрах делительного диаметра и модуля расчетные значения da и df определяют из выражений:

da = d + 2∙m; df = d – 2,4∙m.

Для косозубых колес угол наклона зуба β (Рис. 5 ) можно определить по зависимости:

β = arccos ((m ∙ z)/( d – 2,4∙m)).

Рис. 5 Сечение зубчатого венца по дуге делительной окружности А – Б

При зацеплении зубчатых колес обод воспринимает нагрузку от зубьев.

Поэтому его толщина q должна быть достаточной, чтобы обеспечить как его прочность и жесткость, так и податливость.

Податливость способствует равномерному распределению нагрузки между зубьями и по длине каждого зуба. Рекомендуется выполнять толщину обода в соответствии с формулой:

q = (2,5…4,0) ∙ m, но не менее 8 мм.

(Здесь и далее в расчетах применять средние значения диапазонов коэффициентов.)

Тогда внутренний диаметр обода D0 будет определяться из выражения:

D0 = df – 2q.

Ступица служит для соединения колеса с валом и передачи вращающего момента, а ее торцы определяют положение колеса по длине вала. Для передачи вращающего момента отверстие dвал в ступице выполняют либо с посадкой с натягом либо со шпоночными или шлицевыми пазами (Рис 6). Размеры пазов зависят от диаметра вала, определяются стандартом и приведены в таблице 1.

Рис 6 Шпоночное соединение

Таблица 1

Размеры сечений шпонок и пазов, мм, по ГОСТ 8788-68*

Диаметр вала Сечение шпонки Глубина паза Диаметр вала Сечение шпонки Глубина паза
bhвала t1втулки t2bhвала t1втулки t2
Св. 10 до 12»12 »17»17 »22»22 »30»30 »38»38 »44»44 »50»50 »58 456810121416 456788910 2,533,54555,56 1,82,32,83,33,33,33,84,3 Св. 58 до 65»65 »75»75 »85»85 »95»95 »110»110 »130»130 »150 18202225283236 11121414161820 77,599101112 4,44,95,45,46,47,48,4

(В таблице: b– ширина шпонки и соответственно шпоночного паза;h – высота шпонки.)

Длина ступицы Lсm должна быть достаточной, чтобы обеспечить монтаж зубчатого колеса на валу без перекоса и работоспособность соединения ступицы с валом. Рекомендуется выполнять длину ступицы равной:

Lсm= (0,8…1,5)dвал,

но не менее ширины обода в, т.е. Lсm ≥ в. Диаметр ступицы dсmпринимают достаточным для обеспечения прочности и надежности соединения по выражению:

dсm= 1,8dвал.

Толщина диска С должна быть достаточной, чтобы обеспечить жесткость колеса, и определяется в зависимости от способа его изготовления. Рекомендуется выполнять толщину диска у цилиндрических колес:

– кованых и штампованных C = 0,3 · в ;

– литых С = 0,2 ∙ в.

Отверстия в диске рекомендуется выполнять диаметром

dотв = 0,25∙(D0dсm).

а располагать их на диаметре

Dотв = 0,5∙(D0 + dсm).

На торцах обода и ступицы выполняют фаски, размер которых n × 45°. Параметр n определяется из выражения:

n = (0,5…0,7) ∙ m.

Сопряжение обода и диска, диска и ступицы выполняют по радиусу r, величина которого принимается в зависимости от диаметра колеса:

при dа ≤ 500 мм – r = 5 мм; при dа > 500 мм – r = 7 мм.

Зубчатое колесо должно быть зафиксировано на вале как в окружном, так и в осевом направлениях. Наиболее простым способом фиксации колеса является применение посадок с большим натягом или штифтов (Рис. 6 а).

В этих случаях обеспечивается фиксация колеса в обоих направлениях, Однако использование посадок с натягом связано с большими трудностями при монтаже и демонтаже узла. Поэтому для окружного фиксирования колеса чаще используют шпонки и шлицы.

Эти виды соединений существенно облегчают монтаж и демонтаж узла, но требуют дополнительного фиксирования колеса в осевом направлении. В этих случаях осевое фиксирование осуществляется установочными винтами, пружинными кольцами, распорными втулками и т.д. (рис. 7 б, в, г).

Рис.7. Способы осевого фиксирования колеса: а – штифтом; б – установочным винтом; в – пружинными кольцами; г – распорной втулкой

Порядок измерения параметров и их расчета приведены в бланке отчета о выполнении настоящей работы

Источник: https://mir.zavantag.com/ekonomika/104992/index.html

Виды зубчатых колес, шестерен

Виды зубчатых колес, их назначение и характеристики. Основные параметры, характеризующие зубчатые колеса Параметры зубьев шестерни

Обычно шестерни имеют профиль зубьев с эвольвентной боковой формой.

Так как эвольвентное зацепление имеет ряд преимуществ перед остальными: форма этих зубьев соответствует условиям их прочности, зубья легко изготовить и обработать, шестерни не чувствительны к точности установки.

Тем не менее, существуют зубчатые передачи с циклоидальной формой профиля зубьев, а так же с шестернями с круговой формой профиля зубьев, например – передача Новикова. Помимо этого, применяется несимметричный профиль зуба, например в храповых механизмах.

Параметры эвольвентной шестерни:

Модуль шестерни (m) – это основной параметр, который определяется из прочностного расчёта зубчатых передач. Чем сильнее нагрузка на передачу, тем больше значение модуля, единица измерения модуля – миллиметры.

Расчет модуля шестерни:

d — диаметр делительной окружности

z — число зубьев шестерни

p — шаг зубьев

da — диаметр окружности вершин темной шестерни

db — диаметр основной окружности – эвольвенты

df — диаметр окружности впадин темной шестерни

haP+hfP — высота зуба темной шестерни, x+haP+hfP — высота зуба светлой шестерни

В машиностроении приняты стандартные значения модуля зубчатого колеса для удобства изготовления и замены зубчатых колёс, представляющие собой числа от 1 до 50.

Высота головки зуба – haP и высота ножки зуба – hfP в случае, так называемого, «нулевого» зубчатого колеса соотносятся с модулем m следующим образом: haP = m; hfP = 1,2 m, то есть:

Отсюда получаем, что высота зуба h = 2,2m

Так же можно практически вычислить модуль шестерни, при этом, не имея всех данных для определения модуля, по следующей формуле:

Прямозубые шестерни

Прямозубые шестерни – самый применяемый тип зубчатых колёс. Зубья расположены в радиальных плоскостях, линия контакта зубьев пары зубчатых колес параллельна оси вращения, как и оси обеих зубчатых колес (шестеренок) располагаются строго параллельно.

Косозубые шестерни

Косозубые шестерни – это модернизированная версия прямозубых шестерен. Зубья, в таком случае, расположены под углом к оси вращения. Зацепление зубьев этих шестерен происходит тише и плавнее, чем у прямозубых. Они применяются либо в малошумных механизмах, либо в тех которые требуют передачи большого крутящего момента на больших скоростях.

К недостаткам этого типа шестерен можно отнести: увеличенную площадь соприкосновения зубьев, что вызывает значительное трение и нагрев деталей, а вследствие: потеря мощности и дополнительное использование смазочных материалов; так же механическая сила, направленная вдоль оси шестеренки, вынуждает применять упорные подшипники для установки вала.

Шевронные колёса

Шевронные шестерни решают проблему механической осевой силы, которая возникает в случае применения косозубых колес, так как зубья шевронных (елочных) колёс изготавливаются в виде буквы «V» (или же они образовываются стыковкой двух косозубых колёс со встречным расположением зубьев).

Осевые механические силы обеих половин шевронной шестерни взаимно компенсируются, поэтому нет нет необходимости использования упорных подшипников для установки валов.

Шевронная передача является самоустанавливающейся в осевом направлении, в следствии чего, в редукторах с шевронными колесами один из валов устанавливают на подшипниках с короткими цилиндрическими роликами – плавающих опорах.

Шестерни с внутренним зацеплением

Шестерни такого типа имеют зубья, нарезанные с внутренней стороны. При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше КПД. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в шестеренных насосах, в приводе башни танка.

Винтовые шестерни

Шестерни имеют форму цилиндра с расположенными на нем зубьями по винтовой линии. Эти шестеренки используются на непересекающихся валах, которые располагаются перпендикулярно друг друга, угол между ними 90°.

Секторные шестерни

Секторная шестерня – это часть (сектор) шестерни любого типа, она позволяет сэкономить в габаритах полноценной шестерни, так как применяется в передачах, где не требуется вращение этого зубчатого колеса (шестеренки) на полный оборот.

Шестерни с круговыми зубьями

Шестерни этого типа имеют линию зубьев в виде окружности радиуса, за счет этого контакт в передаче происходит в одной точке на линии зацепления, которая располагается параллельно осям шестерен.

Передачи с круговыми зубьями «Передача Новикова» имеет лучшие ходовые качества, чем косозубые – высокую плавность хода и бесшумность, высокую нагрузочную способность зацепления, но при одинаковых условиях их ресурс работы и КПД ниже, к прочему изготовление этих шестерен значительно сложнее. Поэтому применение таких шестеренок ограниченно.

Конические шестерни

Конические шестерни имеют различные виды, отличаются они по форме линий зубьев, с прямыми, с криволинейными, с тангенциальными, с круговыми зубьями.

Применяются конические зубчатые передачи в машинах для движения механизма, где требуется передать вращение с одного вала на другой, оси которых пересекаются.

Например, в автомобильных дифференциалах, для передачи момента от двигателя к колесам.

Зубчатая рейка

Зубчатая рейка является частью зубчатого колеса с бесконечным радиусом делительной окружности. Вследствие этого ее окружности представляют собой прямые параллельные линии. Эвольвентный профиль зубчатой рейки тоже имеет прямолинейное очертание.

Это свойство эвольвенты является наиболее важным при изготовлении зубчатых колёс. Передачу с применением зубчатой планки (рейки) называют – реечная передача (кремальера), она используется для преобразования вращательного движения в поступательное и наоборот.

Состоит передача из зубчатой рейки и прямозубого зубчатого колеса (шестеренки). Применяется такая передача в зубчатой железной дороге.

Звездочка

Шестерня-звезда – это основная деталь цепной передачи, которая используется совместно с гибким элементом – цепью для передачи механической энергии.

Коронная шестерня – это особый тип шестерен, их зубья находятся на боковой поверхности. Такая шестерня работает, как правило, в паре с прямозубой или с барабаном (цевочное колесо), состоящим из стержней. Такая передача используется в башенных часах.

Источник: https://shesterenka.com.ua/stati/vidy-zubchatyh-koles-shesteren.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.